Fast Bounded Online Gradient Descent Algorithms for Scalable Kernel-Based Online Learning

نویسندگان

  • Steven C. H. Hoi
  • Jialei Wang
  • Peilin Zhao
  • Rong Jin
  • Pengcheng Wu
چکیده

Kernel-based online learning has often shown state-of-the-art performance for many online learning tasks. It, however, suffers from a major shortcoming, that is, the unbounded number of support vectors, making it nonscalable and unsuitable for applications with large-scale datasets. In this work, we study the problem of bounded kernel-based online learning that aims to constrain the number of support vectors by a predefined budget. Although several algorithms have been proposed in literature, they are neither computationally efficient due to their intensive budget maintenance strategy nor effective due to the use of simple Perceptron algorithm. To overcome these limitations, we propose a framework for bounded kernel-based online learning based on an online gradient descent approach. We propose two efficient algorithms of bounded online gradient descent (BOGD) for scalable kernel-based online learning: (i) BOGD by maintaining support vectors using uniform sampling, and (ii) BOGD++ by maintaining support vectors using nonuniform sampling. We present theoretical analysis of regret bound for both algorithms, and found promising empirical performance in terms of both efficacy and efficiency by comparing them to several well-known algorithms for bounded kernel-based online learning on large-scale datasets. Appearing in Proceedings of the 29 th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012. Copyright 2012 by the author(s)/owner(s).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Scale Online Kernel Classification

In this work, we present a new framework for large scale online kernel classification, making kernel methods efficient and scalable for large-scale online learning tasks. Unlike the regular budget kernel online learning scheme that usually uses different strategies to bound the number of support vectors, our framework explores a functional approximation approach to approximating a kernel functi...

متن کامل

Large Scale Online Kernel Learning

In this paper, we present a new framework for large scale online kernel learning, making kernel methods efficient and scalable for large-scale online learning applications. Unlike the regular budget online kernel learning scheme that usually uses some budget maintenance strategies to bound the number of support vectors, our framework explores a completely different approach of kernel functional...

متن کامل

Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training

Online algorithms that process one example at a time are advantageous when dealing with very large data or with data streams. Stochastic Gradient Descent (SGD) is such an algorithm and it is an attractive choice for online Support Vector Machine (SVM) training due to its simplicity and effectiveness. When equipped with kernel functions, similarly to other SVM learning algorithms, SGD is suscept...

متن کامل

Error analysis for online gradient descent algorithms in reproducing kernel Hilbert spaces†

We consider online gradient descent algorithms with general convex loss functions in reproducing kernel Hilbert spaces (RKHS). These algorithms offer an advantageous way for learning from large training sets. We provide general conditions ensuring convergence of the algorithm in the RKHS norm. Explicit generalization error rates for q-norm ε-insensitive regression loss are given by choosing the...

متن کامل

Regret bounds for Non Convex Quadratic Losses Online Learning over Reproducing Kernel Hilbert Spaces

We present several online algorithms with dimension-free regret bounds for general nonconvex quadratic losses by viewing them as functions in Reproducing Hilbert Kernel Spaces. In our work we adapt the Online Gradient Descent, Follow the Regularized Leader and the Conditional Gradient method meta algorithms for RKHS spaces and provide regret bounds in this setting. By analyzing them as algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1206.4633  شماره 

صفحات  -

تاریخ انتشار 2012